教学研讨|8.4.1平面(2019版新教材)
发布于 2021-03-31 09:20
教学研讨所选素材大多来自国家教育资源公共服务平台、人教网等权威媒体,由网友推荐,阳光备课整合,仅供各位老师学习和研究,各部分版权归原作者所有。
▍来源:网络
推荐:
1.数学教师必备 | 手机版《高中数学教学手册》
2.新教材 | 人教A版高中数学·必修·第一册全套·教材分析·教案·课件
3.新教材 | 人教A版高中数学·必修·第二册全套·课文·教材分析·教案·课件
一、教材分析
教材截图
(考虑到研讨时部分教师未带有2019版课本,这里对教材截个图)
教材分析:
1.内容
平面的三个基本事实及其推论.
2.内容解析
立体几何定性研究的重点是直线、平面之间的位置关系.研究这些位置关系,需要学生对点、直线、平面这些组成立体图形的基本要素有所理解.在立体几何的研究中,立体图形问题经常转化为平面图形问题,这是解决立体图形问题的重要思想方法,而转化的基本依据就是关于平面的基本事实及其推论.因此,本小节内容是立体几何学习的重要基础.
与点、直线一样,平面是不加定义的几何概念,三个基本事实刻画了平面的“平”和“无限延展”的特征.基本事实1首先是“三点确定一个平面”,是平面的存在性;基本事实2和3是从直线与平面,平面与平面的关系的角度对平面的进一步刻画;基本事实的三个推论则进一步给出了确定平面的方法.关于平面的基本事实和推论在后续研究直线与平面之间的平行、垂直关系时,会经常用到.
点是空间的基本元素,直线、平面都是点的集合.因此,在图形语言和文字语言的基础上,用集合的符号表示几何对象及其之间的关系是自然的,并且书写简捷.立体几何中的概念、定理,一般要用图形、文字、符号三种语言形式表示.
综上所述,本节课的教学重点是:对三个基本事实和三个推论的理解及其集合符号语言表示.
二、目标和目标解析
1.目标
(1)初步理解平面的概念、三个基本事实和推论,会用图形、文字、符号三种语言形式表述三个基本事实和推论.
(2)在探究三个基本事实的情境中,感悟立体几何结论发现的过程,体验研究几何体的方法,提升直观想象和数学抽象素养.
2.目标解析
达成目标(1)的标志是:会用图形、文字、符号三种语言形式表述三个基本事实和推论的内容;能利用三个基本事实说明平面“平”“无限延展”的基本特征;能够利用三个基本事实和推论作图、证明简单问题.
达成目标(2)的标志是:在探究三个基本事实的过程中,体会通过研究基本元素之间的位置关系来刻画基本元素特征的方法;体会从研究问题出发,通过直观感知、实验操作获得结论,再对某些结论通过说理或推理确认结论的研究立体几何问题的一般思路.发展直观想象和数学抽象的素养.
三、教学问题诊断分析
本节课所研究的三个基本事实和推论,是立体几何的理论基础.对于平面的概念,其“平”、“无限延展”是客观存在的,学生会对为什么还要学习三个基本事实,并用它们对平面的特征进行刻画不理解.教学时要注意引导学生从公理化的角度理解平面的概念和三个基本事实之间的关系:基本事实的意义就是去刻画平面这一不加定义的概念,利用基本事实,就可以用直线的“直”和“无限延伸”刻画平面的“平”和“无限延展”.
在本节课的学习中,要用图形、文字、符号三种语言形式表述基本事实和推论.图形语言比较直观,文字语言也比较容易理解.但用集合的符号语言表示几何元素之间的关系以及几何命题,学生还不习惯.这种不习惯多数情况是学生对图形表达的几何要素之间的关系不理解.教学时要引导学生理解图形或文字语言所反映的几何关系的本质,逐步熟悉用符号语言进行表达.
对于本节课的一些结论(例如三个推论),需要从存在性和唯一性的角度进行理解,这对于学生来讲比较陌生,也比较困难.教学时也要注意控制难度,不要采用严格的证明形式,而宜采用说理的形式进行说明,使学生循序渐进,逐步学会证明立体几何命题的方法.
本节课的教学难点是对基本事实的理解和集合符号语言表示,对推论的说理证明.
更多:https://www.pep.com.cn/gzsx/xrjbgzsx/xrjgzwd/202005/t20200512_1951190.html
四、教学重点、难点
重点:对三个基本事实和三个推论的理解及其集合符号语言表示.
难点:对基本事实的理解和集合符号语言表示,对推论的说理证明.
五、数学学科素养
数学抽象,逻辑推理,数学建模,直观想象
六、教学过程:见《研讨素材二》
温馨提示:
1.1.1 柱、锥、台、球的结构特征 |
1.1.2简单组合体的结构特征 |
精品课件 | 空间几何体的结构特征· |
1.2.1 中心投影与平行投影 |
1.2.2 空间几何体的三视图 |
1.2.3 空间几何体的直观图 |
1.3.1 柱体、锥体、台体的表面积与体积 |
1.3.2 球的体积和表面积 |
2.1.1平面 |
2.1.2 空间中直线与直线之间的位置关系 |
空间中直线与平面、平面与平面之间的位置关系 |
2.1.3 空间中直线与平面之间的位置关系 |
2.1.4 平面与平面之间的位置关系 |
2.2.1直线与平面平行的判定 |
《直线与平面平行的判定》教学设计 |
2.2.2平面与平面平行的判定 |
2.2.3 直线与平面平行的性质 |
课例分析 |《平面与平面平行的判定、性质》(2课时) |
2.2.4 平面与平面平行的性质 |
《直线与平面垂直的判定》教学设计 |
2.3.1 直线与平面垂直的判定(第1批课例) |
2.3.1 直线与平面垂直的判定(第2批课例) |
《平面与平面垂直的判定》课堂实录及教学设计 |
2.3.2 平面与平面垂直的判定 |
2.3.3 空间中直线、平面垂直的性质 |
2.3.4 平面与平面垂直的性质 |
3.1.1直线的倾斜角与斜率 |
“直线的倾斜角和斜率”教学设计 |
3.1.2 两条直线平行与垂直的判定 |
《两条直线平行与垂直的判定》教学设计 |
END
全
文
完
A.数学教师必备 | 手机版《高中数学教学手册》,请收藏!
14.【学生课本·教师用书】13个学科67家出版社直接下载;
15.人教版教科书、教师用书电子版来啦!快快下载;
免责声明
【内容由网上搜索而来,由阳光备课整合,各部分版权归原作者所有,在此向作者致谢!摘录、转载,是想为经济欠发达地区教师提高业务水平做点事,仅此而已,如有侵权,请联系删除,谢谢!】
本文来自网络或网友投稿,如有侵犯您的权益,请发邮件至:aisoutu@outlook.com 我们将第一时间删除。
相关素材